Automatic Curriculum Design for Zero-Shot Human-AI Coordination
Automatic Curriculum Design for Zero-Shot Human-AI Coordination
Won-Sang You, Tae-Gwan Ha, Seo-Young Lee, Kyung-Joong Kim
AbstractZero-shot human-AI coordination is the training of an ego-agent to coordinate with humans without using human data. Most studies on zero-shot human-AI coordination have focused on enhancing the ego-agent's coordination ability in a given environment without considering the issue of generalization to unseen environments. Real-world applications of zero-shot human-AI coordination should consider unpredictable environmental changes and the varying coordination ability of co-players depending on the environment. Previously, the multi-agent UED (Unsupervised Environment Design) approach has investigated these challenges by jointly considering environmental changes and co-player policy in competitive two-player AI-AI scenarios. In this paper, our study extends the multi-agent UED approach to a zero-shot human-AI coordination. We propose a utility function and co-player sampling for a zero-shot human-AI coordination setting that helps train the ego-agent to coordinate with humans more effectively than the previous multi-agent UED approach. The zero-shot human-AI coordination performance was evaluated in the Overcooked-AI environment, using human proxy agents and real humans. Our method outperforms other baseline models and achieves a high human-AI coordination performance in unseen environments.