Efficient Normalization of Linear Temporal Logic

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Efficient Normalization of Linear Temporal Logic

Authors

Javier Esparza, Rubén Rubio, Salomon Sickert

Abstract

In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form $\bigwedge_{i=1}^n \mathbf{G}\mathbf{F}\, \varphi_i \vee \mathbf{F}\mathbf{G}\, \psi_i $, where $\varphi_i$ and $\psi_i$ contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalization procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present direct and purely syntactic normalization procedures for LTL, yielding a normal form very similar to the one by Chang, Manna, and Pnueli, that exhibit only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalizes the formula, translates it into a special very weak alternating automaton, and applies a simple determinization procedure, valid only for these special automata.

Follow Us on

0 comments

Add comment