TAU: A Framework for Video-Based Traffic Analytics Leveraging Artificial Intelligence and Unmanned Aerial Systems



Bilel Benjdira, Anis Koubaa, Ahmad Taher Azar, Zahid Khan, Adel Ammar, Wadii Boulila


Smart traffic engineering and intelligent transportation services are in increasing demand from governmental authorities to optimize traffic performance and thus reduce energy costs, increase the drivers’ safety and comfort, ensure traffic laws enforcement, and detect traffic violations. In this paper, we address this challenge, and we leverage the use of Artificial Intelligence (AI) and Unmanned Aerial Vehicles (UAVs) to develop an AI-integrated video analytics framework, called TAU (Traffic Analysis from UAVs), for automated traffic analytics and understanding. Unlike previous works on traffic video analytics, we propose an automated object detection and tracking pipeline from video processing to advanced traffic understanding using high-resolution UAV images. TAU combines six main contributions. First, it proposes a pre-processing algorithm to adapt the high- resolution UAV image as input to the object detector without lowering the resolution. This ensures an excellent detection accuracy from high-quality features, particularly the small size of detected objects from UAV images. Second, it introduces an algorithm for recalibrating the vehicle coordinates to ensure that vehicles are uniquely identified and tracked across the multiple crops of the same frame. Third, it presents a speed calculation algorithm based on accumulating information from successive frames. Fourth, TAU counts the number of vehicles per traffic zone based on the Ray Tracing algorithm. Fifth, TAU has a fully independent algorithm for crossroad arbitration based on the data gathered from the different zones surrounding it. Sixth, TAU introduces a set of algorithms for extracting twenty-four types of insights from the raw data collected. These insights facilitate the traffic understanding using curves, histograms, heatmaps, and animations. The present work presents a valuable added value for academic researchers and transportation engineers to automate the traffic video analytics process and extract useful insights to optimize traffic performance. TAU is a ready- to-use framework for any Transportation Engineer to better understand and manage daily road traffic (video demonstrations are provided here: https://youtu.be/wXJV0H7LviU and here: https://youtu.be/kGv0gmtVEbI). The source code is available at: https://github.com/bilel-bj/TAU.


Recommended SciCasts
SoK: Yield Aggregators in DeFi
Liquidations: DeFi on a Knife-edge
Cosmic Birefringence in 2022
Introduction to ScienceCast
Quantum chemistry on quantum annealers
Spin-plasma waves
Equatorial magnetoplasma waves