Disentangled Ontology Embedding for Zero-shot Learning

Avatar
Poster
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Disentangled Ontology Embedding for Zero-shot Learning

Authors

Yuxia Geng, Jiaoyan Chen, Wen Zhang, Yajing Xu, Zhuo Chen, Jeff Z. Pan, Yufeng Huang, Feiyu Xiong, Huajun Chen

Abstract

Knowledge Graph (KG) and its variant of ontology have been widely used for knowledge representation, and have shown to be quite effective in augmenting Zero-shot Learning (ZSL). However, existing ZSL methods that utilize KGs all neglect the intrinsic complexity of inter-class relationships represented in KGs. One typical feature is that a class is often related to other classes in different semantic aspects. In this paper, we focus on ontologies for augmenting ZSL, and propose to learn disentangled ontology embeddings guided by ontology properties to capture and utilize more fine-grained class relationships in different aspects. We also contribute a new ZSL framework named DOZSL, which contains two new ZSL solutions based on generative models and graph propagation models, respectively, for effectively utilizing the disentangled ontology embeddings. Extensive evaluations have been conducted on five benchmarks across zero-shot image classification (ZS-IMGC) and zero-shot KG completion (ZS-KGC). DOZSL often achieves better performance than the state-of-the-art, and its components have been verified by ablation studies and case studies. Our codes and datasets are available at https://github.com/zjukg/DOZSL.

Follow Us on

0 comments

Add comment