Fight Fire with Fire: Defending Against Malicious RL Fine-Tuning via Reward Neutralization

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Fight Fire with Fire: Defending Against Malicious RL Fine-Tuning via Reward Neutralization

Authors

Wenjun Cao

Abstract

Reinforcement learning (RL) fine-tuning transforms large language models while creating a vulnerability we experimentally verify: Our experiment shows that malicious RL fine-tuning dismantles safety guardrails with remarkable efficiency, requiring only 50 steps and minimal adversarial prompts, with harmful escalating from 0-2 to 7-9. This attack vector particularly threatens open-source models with parameter-level access. Existing defenses targeting supervised fine-tuning prove ineffective against RL's dynamic feedback mechanisms. We introduce Reward Neutralization, the first defense framework specifically designed against RL fine-tuning attacks, establishing concise rejection patterns that render malicious reward signals ineffective. Our approach trains models to produce minimal-information rejections that attackers cannot exploit, systematically neutralizing attempts to optimize toward harmful outputs. Experiments validate that our approach maintains low harmful scores (no greater than 2) after 200 attack steps, while standard models rapidly deteriorate. This work provides the first constructive proof that robust defense against increasingly accessible RL attacks is achievable, addressing a critical security gap for open-weight models.

Follow Us on

0 comments

Add comment