Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state

Voices Powered byElevenlabs logo


Vadim Grinenko, Rajib Sarkar, K Kihou, CH Lee, I Morozov, S Aswartham, B Büchner, P Chekhonin, W Skrotzki, K Nenkov, R Hühne, K Nielsch, S-L Drechsler, VL Vadimov, MA Silaev, PA Volkov, I Eremin, H Luetkens, H-H Klauss


In general, magnetism and superconductivity are antagonistic to each other. However, there are several families of superconductors in which superconductivity coexists with magnetism, and a few examples are known where the superconductivity itself induces spontaneous magnetism. The best-known of these compounds are Sr2RuO4 and some non-centrosymmetric superconductors. Here, we report the finding of a narrow dome of an s+is′ superconducting phase with apparent broken time-reversal symmetry (BTRS) inside the broad s-wave superconducting region of the centrosymmetric multiband superconductor Ba1 − xKxFe2As2 (0.7 ≲ x ≲ 0.85). We observe spontaneous magnetic fields inside this dome using the muon spin relaxation (μSR) technique. Furthermore, our detailed specific heat study reveals that the BTRS dome appears very close to a change in the topology of the Fermi surface. With this, we experimentally demonstrate the likely emergence of a novel quantum state due to topological changes in the electronic system.

Follow Us on


Add comment
Recommended SciCasts
Prototype-based Dataset Comparison