Evidence for suppression of growth of structure

Voices Powered byElevenlabs logo


Nhat-Minh Nguyen, Dragan Huterer, Yuewei Wen


We present evidence for a suppressed growth rate of large-scale structure during the dark-energy dominated era. Modeling the growth rate of perturbations with the ``growth index'' γ, we find that current cosmological data strongly prefer a higher growth index than the value γ=0.55 predicted by general relativity in a flat ΛCDM cosmology. Both the cosmic microwave background data from Planck and the large-scale structure data from weak lensing, galaxy clustering, and cosmic velocities separately favor growth suppression. When combined, they yield γ=0.633+0.025−0.024, excluding γ=0.55 at a statistical significance of 3.7σ. The combination of fσ8 and Planck measurements prefers an even higher growth index of γ=0.639+0.024−0.025, corresponding to a 4.2σ-tension with the concordance model. In Planck data, the suppressed growth rate offsets the preference for nonzero curvature and fits the data equally well as the latter model. A higher γ leads to a higher matter fluctuation amplitude S8 inferred from galaxy clustering and weak lensing measurements, and a lower S8 from Planck data, effectively resolving the S8 tension.

Follow Us on


Add comment
Recommended SciCasts