Majorana-Magnon Interactions in Topological Shiba Chains



Pei-Xin Shen, Vivien Perrin, Mircea Trif, Pascal Simon


A chain of magnetic impurities deposited on the surface of a superconductor can form a topological Shiba band that supports Majorana zero modes and hold a promise for topological quantum computing. Yet, most experiments scrutinizing these zero modes rely on transport measurements, which only capture local properties. Here we propose to leverage the intrinsic dynamics of the magnetic impurities to access their non-local character. We use linear response theory to determine the dynamics of the uniform magnonic mode in the presence of external $ac$ magnetic fields and the coupling to the Shiba electrons. We demonstrate that this mode, which spreads over the entire chain of atoms, becomes imprinted with the parity of the ground state and, moreover, can discriminate between Majorana and trivial zero modes located at the ends of the chain. Our approach offers a non-invasive alternative to the scanning tunnelling microscopy techniques used to probe Majorana zero modes. Conversely, the magnons could facilitate the manipulation of Majorana zero modes in topological Shiba chains.


Recommended SciCasts
Quantum spherical codes