Signature of strange star as the central engine of GRB 240529A

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Signature of strange star as the central engine of GRB 240529A

Authors

Xiao Tian, HouJun Lü, WenJun Tan, ShaoLin Xiong, HaoYu Yuan, WenYuan Yu, ShuQing Zhong, WenLong Zhang, EnWei Liang

Abstract

GRB 240529A is a long-duration gamma-ray burst (GRB) whose light curve of prompt emission is composed of a triple-episode structure, separated by quiescent gaps of tens to hundreds of seconds. More interestingly, its X-ray light curve of afterglow exhibits two-plateau emissions, namely, an internal plateau emission that is smoothly connected with a $\sim t^{-0.1}$ segment and followed by a $\sim t^{-2}$ power-law decay. The three episodes in the prompt emission, together with two plateau emissions in X-ray, are unique in the Swift era. They are very difficult to explain with the standard internal/external shock model by invoking a black hole central engine. However, it could be consistent with the prediction of a supramassive magnetar as the central engine, the physical process of phase transition from magnetar to strange star, as well as the cooling and spin-down of the strange star. In this paper, we propose that the first- and second-episode emissions in the prompt $\gamma-$ray of GRB 240529A are from the jet emission of a massive star collapsing into a supramassive magnetar and the re-activity of central engine, respectively. Then, the third-episode emission of prompt is attributed to the phase transition from a magnetar to a strange star. Finally, the first- and second-plateau emissions of the X-ray afterglow are powered by the cooling and spin-down of the strange star, respectively. The observational data of each component of GRB 240529A are roughly coincident with the estimations of the above physical picture.

Follow Us on

0 comments

Add comment