X-ray Emission Properties of a Compact Symmetric Object Sample
X-ray Emission Properties of a Compact Symmetric Object Sample
Ying-Ying Gan, Su Yao, Tan-Zheng Wu, Hai-Ming Zhang, Jin Zhang
AbstractWe present a comprehensive analysis of the X-ray observations obtained from \xmm\, and \chandra\, for a sample of bona-fide Compact Symmetric Objects (CSOs) to investigate their X-ray emission properties. Ultimately, we obtain 32 effective X-ray observational spectra from 17 CSOs. Most spectra can be well described by an absorbed single power-law model, with the exception of 6 spectra requiring an additional component in the soft X-ray band and 2 spectra exhibiting an iron emission line component. The data analysis results unveil the diverse characteristics of X-ray emission from CSOs. The sample covers X-ray luminosity ranging within $10^{40}-10^{45}$ erg s$^{-1}$, intrinsic absorbing column density ($N_{\rm H}^{\rm int}$) ranging within $10^{20}-10^{23}$ cm$^{-2}$, and photon spectral index ($\Gamma_{\rm X}$) ranging within 0.75--3.0. None of the CSOs in our sample have $N_{\rm H}^{\rm int}$ > $10^{23}\rm~cm^{-2}$, indicating that the X-ray emission in these CSOs is not highly obscured. The distribution of $\Gamma_{\rm X}$ for these CSOs closely resembles that observed in a sample of radio-loud quasars and low-excitation radio galaxies (RGs). In the radio--X-ray luminosity panel, these CSOs exhibit a distribution more akin to FR I RGs than FR II RGs, characterized by higher luminosities. The positive correlation between $\Gamma_{\rm X}$ and the Eddington ratio, which has been noted in radio-quiet active galactic nuclei, is not observed in these CSOs. These findings suggest that although the contribution of the disk-corona system cannot be completely ruled out, jet/lobe radiation likely plays a dominant role in the X-ray emission of these CSOs.