The Augmentation-Speed Tradeoff for Consistent Network Updates



Monika Henzinger, Ami Paz, Arash Pourdamghani, Stefan Schmid


Emerging software-defined networking technologies enable more adaptive communication infrastructures, allowing for quick reactions to changes in networking requirements by exploiting the workload's temporal structure. However, operating networks adaptively is algorithmically challenging, as meeting networks' stringent dependability requirements relies on maintaining basic consistency and performance properties, such as loop freedom and congestion minimization, even during the update process. This paper leverages an augmentation-speed tradeoff to significantly speed up consistent network updates. We show that allowing for a small and short (hence practically tolerable, e.g., using buffering) oversubscription of links allows us to solve many network update instances much faster, as well as to reduce computational complexities (i.e., the running times of the algorithms). We first explore this tradeoff formally, revealing the computational complexity of scheduling updates. We then present and analyze algorithms that maintain logical and performance properties during the update. Using an extensive simulation study, we find that the tradeoff is even more favorable in practice than our analytical bounds suggest. In particular, we find that by allowing just 10% augmentation, update times reduce by more than 32% on average, across a spectrum of real-world networks.

1 comment


In you formal model, is there an explicit constraint that prohibits loops?

Add comment
Recommended SciCasts
Spin-plasma waves
SoK: Yield Aggregators in DeFi
Introduction to ScienceCast
Quantum chemistry on quantum annealers
Cosmic Birefringence in 2022
Liquidations: DeFi on a Knife-edge