Dynamics of photo-induced ferromagnetism in oxides with orbital degeneracy

Avatar
Connected to paperThis paper is a preprint and has not been certified by peer review

Dynamics of photo-induced ferromagnetism in oxides with orbital degeneracy

Authors

Jonathan B. Curtis, Ankit Disa, Michael Fechner, Andrea Cavalleri, Prineha Narang

Abstract

By using intense coherent electromagnetic radiation, it may be possible to manipulate the properties of quantum materials very quickly, or even induce new and potentially useful phases that are absent in equilibrium. For instance, ultrafast control of magnetic dynamics is crucial for a number of proposed spintronic devices and can also shed light on the possible dynamics of correlated phases out of equilibrium. Inspired by recent experiments on spin-orbital ferromagnet YTiO$_3$ we consider the nonequilibrium dynamics of Heisenberg ferromagnetic insulator with low-lying orbital excitations. We model the dynamics of the magnon excitations in this system following an optical pulse which resonantly excites infrared-active phonon modes. As the phonons ring down they can dynamically couple the orbitals with the low-lying magnons, leading to a dramatically modified effective bath for the magnons. We show this transient coupling can lead to a dynamical acceleration of the magnetization dynamics, which is otherwise bottlenecked by small anisotropy. Exploring the parameter space more we find that the magnon dynamics can also even completely reverse, leading to a negative relaxation rate when the pump is blue-detuned with respect to the orbital bath resonance. We therefore show that by using specially targeted optical pulses, one can exert a much greater degree of control over the magnetization dynamics, allowing one to optically steer magnetic order in this system. We conclude by discussing interesting parallels between the magnetization dynamics we find here and recent experiments on photo-induced superconductivity, where it is similarly observed that depending on the initial pump frequency, an apparent metastable superconducting phase emerges.

Follow Us on

3 comments

Avatar
alexzhang

Jonathan, how does light couple of spins? Normally, such a coupling is prohibited. 

Avatar
jonbcurtis

Hi Alex, great question. There are more details in our preprint of course, but in a nutshell the particular case we are looking at actually involves directly coupling the light to infrared active phonon modes. These phonon modes then lead to oscillations of the lattice, which affect the orbital and spin degrees of freedom. Let me know if this answers your question!


Answer
Avatar
jonbcurtis

Hi Alex, great question. There are more details in our preprint of course, but in a nutshell the particular case we are looking at actually involves directly coupling the light to infrared active phonon modes. These phonon modes then lead to oscillations of the lattice, which affect the orbital and spin degrees of freedom. Let me know if this answers your question!

Add comment