Chain-of-Thought Reasoning In The Wild Is Not Always Faithful

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Chain-of-Thought Reasoning In The Wild Is Not Always Faithful

Authors

Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, Arthur Conmy

Abstract

Chain-of-Thought (CoT) reasoning has significantly advanced state-of-the-art AI capabilities. However, recent studies have shown that CoT reasoning is not always faithful, i.e. CoT reasoning does not always reflect how models arrive at conclusions. So far, most of these studies have focused on unfaithfulness in unnatural contexts where an explicit bias has been introduced. In contrast, we show that unfaithful CoT can occur on realistic prompts with no artificial bias. Our results reveal concerning rates of several forms of unfaithful reasoning in frontier models: Sonnet 3.7 (30.6%), DeepSeek R1 (15.8%) and ChatGPT-4o (12.6%) all answer a high proportion of question pairs unfaithfully. Specifically, we find that models rationalize their implicit biases in answers to binary questions ("implicit post-hoc rationalization"). For example, when separately presented with the questions "Is X bigger than Y?" and "Is Y bigger than X?", models sometimes produce superficially coherent arguments to justify answering Yes to both questions or No to both questions, despite such responses being logically contradictory. We also investigate restoration errors (Dziri et al., 2023), where models make and then silently correct errors in their reasoning, and unfaithful shortcuts, where models use clearly illogical reasoning to simplify solving problems in Putnam questions (a hard benchmark). Our findings raise challenges for AI safety work that relies on monitoring CoT to detect undesired behavior.

Follow Us on

0 comments

Add comment