Group B streptococci lyse endothelial cells to infect the brain in a zebrafish meningitis model
Group B streptococci lyse endothelial cells to infect the brain in a zebrafish meningitis model
Ravishankar, S.; Tuohey, S. M.; Ramos, N. O.; Uchiyama, S.; Hayes, M. I.; Nizet, V.; Madigan, C. A.
AbstractTo cause meningitis, bacteria move from the bloodstream to the brain, crossing the endothelial cells of the blood-brain barrier. Most studies on how bacteria cross the blood-brain barrier have been performed in vitro using cultured endothelial cells, due to a paucity of animal models. Group B Streptococcus (GBS) is the leading cause of bacterial meningitis in neonates and is primarily thought to cross the blood-brain barrier by transcytosis through endothelial cells. To test this hypothesis in vivo, we used optically transparent zebrafish larvae. Timelapse confocal microscopy revealed that GBS forms extracellular microcolonies in brain blood vessels and causes perforation and lysis of blood-brain barrier endothelial cells, which promotes bacterial entry into the brain. Vessels infected with GBS microcolonies were distorted and contained thrombi. Inhibition of clotting worsened brain invasion, suggesting a host-protective role for thrombi. The GBS lysin cylE, implicated in brain invasion in vitro, was found dispensable in vivo. Instead, pro-inflammatory mediators associated with endothelial cell damage and blood-brain barrier breakdown were specifically upregulated in the zebrafish head upon GBS entry into the brain. Therefore, GBS crosses the blood-brain barrier in vivo not by transcytosis, but by endothelial cell lysis and death. Given that we observe the same invasion route for a meningitis-associated strain of Streptococcus pneumoniae, our findings suggest that streptococcal infection of brain blood vessels triggers endothelial cell inflammation and lysis, thereby facilitating brain invasion.